@ LO(’.?K®
&)

Copy Protection System

Developer Manual

for Microsoft Windows XP to 10 (all 32/64-bit),
CE, Linux X86/A64/ARM and Mac OS X

EIrL
LOCK
Copy Protection System

Developer Manual

for Microsoft Windows XP to 10 (all 32/64-hit),
CE, Linux X86/A64/ARM and Mac OS X

Version: February 2016
SG Intec Ltd & Co. KG, Schauenburgerstr. 116, D-24118 Kiel, Germany
Fon 4449431 97993-00 Fax ++49 431 97993-50
web: www.sg-lock.com email: info@sg-intec.de

WEE-Reg.-ID: DE 43502119
All information in this manaul are subject to change without notice. All trademarks are the prop-
erties of their respective owners. All rights reserved. No part of the contents of this book may be

reproduced or transmitted in any form or by any means without the written permission of SG Intec
Ltd & CoKG.

Contents

1 Introduction

2 Installation and Tools
2.1 32/64-bitOperatingSystems
22 WindowsXPto10, .
23 LinuxandMacOSX
24 WindowsCE4,5and6
25 Dengdlation
2.6 Edit SG-Lock withthe SG-Lock Manager

3 Protecting Software with SG-Lock
3.1 Introduction
3.2 ProtectionStrategies
3.3 TheSG-Lock Product ID - what isit goodfor?
3.4 Encryption and Challenge-Response-Authentication of SG-Lock

4 SG-Lock API
41 Functionsummaryo
42 Basicfunctions
421 Function: SglAuthent L.
422 Function: SglSearchLock
4.2.3 Function: SglReadSerialNumber
43 ExtendedFunction
431 Function: SglReadData
432 Function: SgiWriteData
433 Function: SglReadCounter
4.3.4 Function: SglWriteCounter
4.4 Cryptographicand Signingfunctions
441 Function: SgICryptLock
44.2 Function: SgISignData. L.

[E

o010 wWwwww

Vi Contents
45 AdministrativeFunctions Lo oL 31
451 Function: SglReadProductld 31

45.2 Function: SglWriteProductld 32

453 Function: SgiWriteKey 33

454 Function: SglReadConfig 34

46 ReturnVaues 36

5 Encryption, Signing and Key Management 37
6 Programming Examples 39
6.1 FunctionSglAuthent 39
6.11 CICHt. . . . e 39

6.12 Dephi........ 39

6.1.3 VisualBasic 40

6.2 Function SglSearchLock 42
621 CICH. . . . 42

622 Dephi........ 42

623 VisuadBasic 43

6.3 Function SglReadSerialNumber 44
631 CICH+. e 44

632 Dephi......... 44

633 VisuadBasic 45

6.4 FunctionSglReadData 46
6.41 CICH. 46

642 Dephi........ 46

643 VisualBasic 47

6.5 FunctionSglWriteData 49
651 CICH. 49

652 Dephi........ 49

653 VisualBasic 50

6.6 Challenge-Response-Authentificationof aSG-Lock 52
661 CICHt. e 52

7 Technical Data 55
71 SG-LockU2/U3/U4 55

1 Introduction

SG-Lock is an innovative hardware based copy protection system, that can be
used with all 32- and 64-bit Windows, Linux and Mac OS X operationg systems.
Also Windows CE is supported.

OQutstanding freatures are:

» Every SG-Lock hasits own unique serial number.

Up to 1024 bytes SG-Lock internal free useable encrypted memory.

128-hit encryption with up to 16 free programmable keys.
» Upto 64 free usable counters for easy logging of countable events.

* The USB SG-Lock can be installed without driver installation and admin
rights (Windows XP to 10).

Special security features:

» Thewhole SG-Lock internal memory is transparent for the user encrypted
and signed with a unique 128-bit key. Hardware attacks like manipulation
of single data values or exchange of the whole memory will be detected
and prevented.

» Simple and efficient challenge resonse authentication mechanism between
protected application and SG-Lock API. The SG-Lock API is not like of-
ten implemented immediately useable in its full functionality. On princi-
ple every application has to authenticate itself before it gets access to the
SG-Lock API. This mechanism prevents attacks of not authorized applica-
tions. In addition the protected application can itself verify the SG-Lock
API and detect a doubtful library. The authentication mechanism is done
by calling only one function with one parameter.

Chapter 1: Introduction

Figure 1.1: SG-Lock U-Series

e The SG-Lock API workswith amodul internal as well aswith an applica-
tioninternal 128-bit TEA (Tiny Encryption Algorithm) encryption engine.
Thissymmetrical (key for encryption and decryption are identical) and se-
cure encryption algorithm is the basis for various implementations of data
and code protection as well as authentiction strategies.

* The single SG-Lock models are offered in two different shapes, which
are however functional identical and therefore fully exchangeable. The
S-seriesis because of the small size espacialy suiteable for notebook and
tablet computers. The U-series is approved by its ergonomic form due to
its bigger size mainly for desktop computers.

2 Installation and Tools

Theinstallation of SG-Lock is quite simple and transparent structured to ease the
integration into the installation of the protected application.

2.1 32/64-bit Operating Systems

The 32-bit SG-Lock libraries are generally used for all 32-bit applications - even
when the 32-bit application is running under a 64-bit operating system. The 64-
bit versions of the SG-Lock libraries are only used, when a 64-bit application
has to be protected.

2.2 Windows XP to 10

Toinstall SG-Lock USB keys process the following 2 steps:

1. Copy the SG-Lock library SGLW32.DLL (32- or 64-bit version) in the
Windows system directory (for example C:\WINDOWS\SY STEM32) or
into the installation directory of the protected application.

2. Plug the SG-Lock USB key into the USB port. A small window will show
up for a short time giving the information, that the SG-Lock can now be
used. Now theinstallation has successfully finished and the SG-Lock USB

isready for use.

2.3 Linux and Mac OS X

Please take alook onto the SG-Lock SDK CD-ROM for installation instructions.

Chapter 2: Installation and Tools

S5G-Lock protected appl|_ = = P

D10111
00110
10101

1101071
SG-Lock API

Application Space 1

Operating System 1

USB Sub-System

2

Figure 2.1: The SG-Lock API (the file SGLW32.DLL) establishes the connec-
tion between protected application and SG-Lock hardware.

Chapter 2: Installation and Tools 5

2.4 Windows CE 4, 5 and 6

Please note, that only the SG-Lock U4 supports Windows CE.

1

2.5

Copy the file SGLWCE.DLL in the application or the system directory
(e.g. \Windows). This can also be done by a script at system start.

. Copy thefile SGLUSB.DLL in adirectory that exists at system start (e.g.

\Storage).

. Adjust both keyswith name DLL in the registry script SGLUSB.REG ac-

cording the path of SGLUSB.DLL (if e.g. your SGLUSB.DLL residesin
\Storage, change the values of both keys to Storage\SGLUSB.DLL). Do
not use a preceding backslash. L eave the keys PREFIX unchanged.

. Execute the adjusted registry script and save the registry (e.g. with the

AP CONFIG MANAGER in file card APSystem, button STORAGE/REG-
ISTRY/SAVE), to keep the configuration for further system starts.

Deinstallation

The deinstallation is simply done by deleting the copied files and - when con-
ducted during the installation - aso deleting the registry keys.

6 Chapter 2: Installation and Tools

2.6 Edit SG-Lock with the SG-Lock Manager

The SG-Lock Manager (SGLMGR) is atool delivered on the SG-Lock CDROM
for testing and editing all SG-Lock moduls.

Run the SGLMGR by starting the file SgiMgr.Exe in the directory Test. The
index card Options offers to change the language with Select Language. Ad-
ditionally the number radix can be changed between decimal and hexadecimal
representaton. This has also to be taken into account when entering numbers!

5 SG-Lock Manager Ver 1.13 EIM

@ oer®
LOCK

\&)

Properties |Memory| Eounterl Eryptographyl Dptinnsl

Modul
Type 113 [Demo)
Senial Humber Q01 59F73

Product ID IDDDDDDD'I

| iike Product D

Wersion
Madul Saoftware 1.23
Madul Hardware 1.04
API/Librany 228

Read Properties

Status: Data successful read!

All functions, that the SGLMGR offers, are part of the SG-Lock APl and can

Chapter 2: Installation and Tools 7

also be used by protected applications. The index card Properties offers with
the push button Read Properties the display of important information like type,
serial number, product id and version numbers of the attached SG-L ock.

With the push button Write Product ID the value can be altered between 0 and
65535 (dec.). The function of the product id is described in detail in chapter 3.3.

9P SG-Lock Manager Ver 1.13 E@g

@_ LOCK ©
&)

Properties Memony |Enunter| Er_l,lptu:ngraph_l,ll Dptionsl

Addr. |Malue -
oona [l
0001 | FFFFO000
0002 | 44000000
0003 | 00005000
0004 | 00002000
0005 | 10000000
0006 | 10000000
0007 | 10000000
0008 | 10000000
oooa 1111111
oooa 1111111
oooe 11111111
oooc 1111111 %

{ReadMemony | wiite Memory

Statuz: Data successful read!

The index card Memory makes it possible to read and write the modul internal
memory (when existing). For changing one or more data values they have to
be entered into the table and by pushing the push button Write Memory they

8 Chapter 2: Installation and Tools

are written into the modul internal memory. Before writing any value read the

memory first.
The index card Counter offers the same functions for the counter memory.

They are not located in the datamemory area, but use additional memory - which
excludes side effects.

”
% SG-Lock Manager Ver 1.13 Iﬂlﬂlﬂ

@ ,o0®
LOCK

\\J J
F'ropertiesl Memuryl Counter Cryptography | Dplionsl

Use Key Mo |1 vl

—128Eit Key
SCEEADDE |‘|FDBAB4E| |4D2EE?53 |EBDB2F‘|9

Wiite Key | Generate Bandom Key |

rData En-/Deciyption
E4-Bit Input D ata
| ACTFRE4Z |FFBBDIZI11

E4-Bit Result Data
|BBEED!—'«BS |A3EEEE35

| Encrpt Data | Decrypt Data

Statuz: Encryption successful

Index card Cryptography offers the possibilty to use the cryptographic functions
of SG-Lock. SG-Lock usesamodul internal symmetric (i.e. thekeysfor encryp-
tion and decryption are identical) 128-bit encryption. The data block length is
64-bit and the algorithm is TEA. The SG-Lock series 3 and 4 have multiple key

Chapter 2: Installation and Tools 9

storage locations. To change a key the key number has to be choosen with Use
Key No. first, after that enter the key used for encryption. The key will be written
toitsmodul internal memory location by pushing the button Write Key. With the
push button Generate Random Key a 128-bit key can be generated automaticly.
It can be proccessed further over the clipboard e.g. for documentation purposes
(thisis recommended, because the key can not be read for security reasons).

For testing the encryption engine two 32-bit values (which are equivalent to
one 64-hit block) can be entered into the fields Input Data. By pressing Encrypt
or Decrypt Data the 64 bits input data block will be en- or decrypted. The result
is shown in the fields Output Data.

5 SG-Lock Manager Ver 1.13 Iilﬂlﬂ

@_ LOCK ©
&)

Propertiesl Memor_l.JI Eounterl Cryptography Dptians |

Authentcode
[FE74D17B |A94628EE |F2857ABF |E3346B4A
[#136E8F2 |894DCBRR |BOC2CID4 |ABCRIZTC
[14726994 |S74B7CA0 [1EED3ESS |D7DEFDCS

Save my Authentcode |

Select Language Mumber Radis———
Enaish X = Decimal

* Hexadecimal

Statuz: Encryphion successul

10 Chapter 2: Installation and Tools

On the index card Options the language and radix of the displayed numbers
(except version numbers on index card Properties are allways decimal) can be
choosen. When choosing hexadecimal numbers, the input is also hexadecimal
without leading or trailing special characters.

Attention: Theinput of an authent code (AC) is necessary when not-demo (re-
tail) SG-Lock moduls are used. Without entering a authent code only demo-
moduls will be detected. Every software manufacturer, that uses SG-Lock, gets
ones with the first dilivery his individual AC. The AC is presented in hexadec-
imal style - the number radix has to be altered if necessary when entering the
AC.

3 Protecting Software with
SG-Lock

3.1 Introduction

The operation of SG-Lock as copy protection system is based on the call of
certain functions, that establish a connection between an easy to copy software
(that therefore has to be protected) and the practically impossible to copy SG-
Lock hardware.

The for that used functions are the functions of the SG-Lock API (appli-
cation programming interface). They are contained in the software library
SGLW32.DLL, that is delivered with the SG-Lock hardware. The SG-Lock AP
provides varying types of functions, of which according to the type of protection
different are used. For an effective software protection not all of the functions
have to be used.

3.2 Protection Strategies

The most frequently applied type of protection of software against illegal useis
the ssmple "run or run not“ copy protection, that avoids that the software runs
on more PCs than paid for. In this case the repeatedly test whether the copy
protection key isinstalled on the PC or not is the main task.

Other protection strategies shall alow the software to run only alimited num-
ber of starts. For that a counter, that logs the number of starts, is needed addition-
aly beside the existance of the copy protection key. SG-Lock provides counter
variablesfor purposeslike that.

A similar limit to run softwareis the use of an application only up to acertain
date. Inthat case a date is stored in the SG-Lock memory to verify at program
start and during software use, that has not been reached.

Another aternative to control software use is " pay per use*. The user pays

11

12 Chapter 3: Protecting Software with SG-Lock

only for the use of cental features of a software, e.g. when chemical analysis
software performs one anlysis.

3.3 The SG-Lock Product ID - what is it good for?

Almost all functions of the SG-Lock API use a parameter called " Product|D”.
What is that good for? In many cases a software company sells more than one
software product. When using a common copy protection key the programmer
has to regard that an installed copy protection key is valid for the software just
running and not for some of the other products they are also selling. That is
additional administrative work and an additional source of error.

SG-L ock solves this with the Product ID. Every software product and the be-
longing SG-L ocks get their own Product ID, e.g. software A gets Product ID 1,
software B gets 2 and so on. In the source code of software A the parameter of
the SG-Lock API functionsis always 1, in B allways 2 and so on - the SG-Lock
API selects the right SG-Lock for you.

Chapter 3: Protecting Software with SG-Lock 13

e A

Company X
AC=X

=1 il SG-Lock API
Software
A |- -
PID=1 AC=Y

PID=1

|:||E|§:§

Software

B —
- 1D
e ——— AC=X
=& % PID=1
Software
PID=3
‘ J
s) e
Company Y
AC=Y
==
Software
A -
AC=X
PID=2

Figure 3.1: The SG-Lock Productld allows an easy separation of different prod-
ucts of a manufacturer. The Authentcode separates manufactures
strictly from each other.

14 Chapter 3: Protecting Software with SG-Lock

3.4 Encryption and
Challenge-Response-Authentication of
SG-Lock

SG-Lock provides a special security feature based on an encryption algorithm.
It is called a challenge-response-authentication. It gives a maximum of security
by verifying the whole path from the protected application through the SG-L ock
library, through the operations system and the physical interface (e.g. USB-bus)
to the internal s of the SG-Lock copy protection key.

The procedureis based on the 128-bit TEA (Tiny Encryption Algorithm) en-
cryption engineimplemented in the SG-L ock hardware and big random numbers
that have to be encrypted.

A simple example how to implement that feature can be found in the chapter
" Progamming Examples*. The exampleiswritten in C/C++, but can also easily
be coded in other programming languages (e.g. Delphi, VB, etc.).

Chapter 3: Protecting Software with SG-Lock 15
(@ SG-Lock protected application |8 ¥
100110
ET‘] 10101 E SG-Lock @
SG-Lock API -
((- ™ :)
1. 3.
(O) [1578 4B14
L6 89F3 C261
— _ _
2 P p— | 157B4B14 |
: | 157B4B14 | BOF3C261
89F3 C261
N B 0010
) 10101 O 128-Bit Key X
() 128-BitKey X h1inin
SglCryptLock()
2E57 C112 83A1 77E9
83A1 77E9
{
4.
2E57 C112) _ (2E57 C112
83A1 77E9 | = | 83A1 77E9
§ J

Figure 3.2: The SG-Lock Challenge-Response-Authentication provides a secure
connection from the protected application (EXE-file) through the
whole operating system over the USB-bus to the SG-Lock token

itself.

4 SG-Lock API

4.1 Function summary

The SG-Lock API functions can be devided into the 4 groups: basic functions,
extended functions, cryptographic and administrative functions. The basic func-
tions, that are essential for most software protection approaches, like e.g. check-
ing if a SG-Lock is actually plugged in aport of the PC. The extended functions
with special capabilities provide functionalities for special intended aims, e.g.
memory and counters, which can be used to store strings or counters to limit
program starts. Functions of that group are used, when certain protection strate-
gies are pursued.

The group of administrative functions is primarily used for the preparation
purposes of the SG-Lock hardware prior delivery to the software users. They are
normally not implemented in the source code of the protected application. In-
stead they are used to build small an simpleinitialisation applicationsto prepare
SG-L ock devices by the software company before shipment to the users.

17

18

Chapter 4: SG-Lock AP

Function name

Basic functions
SglAuthent

Sgl SearchL ock
SglReadSerial Number

Extended functions
SglReadData

SglWriteData
SglReadCounter
SglWriteCounter

Description

Authentification of the SG-Lock library
Searches for a SG-Lock device
Reads the serial number of a SG-Lock device

Reads data from the memory of a SG-Lock de-
vice

Writes data to the memory of a SG-Lock device
Reads a counter value from a SG-Lock device
Writes a counter value to a SG-Lock device

Cryptogr aphic functions

SglCryptLock

SglSignDataApp
SglSignDatalock
SglSignDataComb

En- or decrypts one or more data blocks with the
SG-Lock device using a SG-Lock deviceinternal
key

Sign or verify data with the PC

Sign or verify datawith a SG-Lock device

Sign or verify datawith a combination of PC and
SG-Lock device

Administrative functions

SglReadProductld
SglWriteProductld
SglWriteKey
SglReadConfig

Reads the ProductI D from a SG-Lock device
Writes a ProductI D to a SG-Lock device

Writes a 128-hit key to a SG-Lock device

Reads configuration data from the SG-L ock envi-
ronment or a SG-Lock device (e.g. type of SG-
Lock)

Chapter 4: SG-Lock AP 19

4.2 Basic functions

4.2.1 Function: SglAuthent
Description

Authentication of SG-Lock library to the protected application and vice versa.

Types
uz2. v U3 v U4 Vv

Declaration

ULONG SglAuthent (
ULONG » AuthentCode);

Parameters

AuthentCode 48 byte sequence, that is unique to every SG-
Lock customer

Return values

SGL_SUCCESS Authentification successfull
SGL_AUTHENTICATION_FAILED Authentification failed

Thefull list of return codesislisted in chapter 4.6.

Comments

This function of the SG-Lock API has to be called oncefirst and successfully to
enable all other API functions. In the case of dynamic linking the authentication
isrequired after every link procedure (LoadLibrary call).

Every customer get his unique Authentcode when purchasing SG-Lock (nhon
Demo) the first time. Demo kits have an own authentication code (see exam-
ple source codefiles).

20 Chapter 4: SG-Lock AP

4.2.2 Function: SglSearchLock
Description

Searches for a SG-Lock device.

Types
uz2. v U3 v U4 v
Declaration

ULONG SglSearchL ock (
ULONG Productld);

Parameters
Productld Indicates the Productld of the SG-Lock looked
for
Return values
SGL_SUCCESS SG-Lock found
SGL_DGL_NOT_FOUND SG-Lock not found

Thefull list of return codesis listed in chapter 4.6.

Chapter 4: SG-Lock AP 21

4.2.3 Function: SglReadSerialNumber
Description

Reads the for every SG-Lock unique serial number.

Types
uz2. v U3 v u4 v

Declaration

ULONG SglReadSerialNumber (
ULONG Productld ,
ULONG = SerialNumber);

Parameters
Productld Indicates the Productld of the SG-L ock
SerialNumber Pointsto variable, in which the serial number will

be given back to the calling application

Return values

SGL_SUCCESS SG-Lock serial number success-
fully read
SGL_DGL_NOT_FOUND SG-Lock not found

Thefull list of return codesislisted in chapter 4.6.

Comments

Every SG-Lock has a seria number that is unique, which is aso not depending
on type and interface.

22

Chapter 4: SG-Lock AP

4.3 Extended Function

4.3.1 Function: SglReadData
Description

Read 32-bit data from the SG-Lock memory.

Types
uz2: - U3 v U4 v

Declaration

ULONG SglReadData (
ULONG Productld ,
ULONG Address,
ULONG Count ,
ULONG = Data);

Parameters

Productld Indicates the Productld of the SG-L ock

Address Startadress of data value block
0to 63 - SG-Lock U3
0to 255 - SG-Lock U4

Count Number of data values

Data Pointer to dataarray, in which the datavalueswill
be givenback to the calling application. (The de-
veloper is responsible to provide an array with a
sufficient size).

Return values

SGL_SUCCESS

Data values successfully read

SGL_DGL_NOT_FOUND

SG-L ock not found

Thefull list of return codesis listed in chapter 4.6.

Chapter 4: SG-Lock AP

23

4.3.2 Function: SglWriteData

Description

Writes 32-bit data values to SG-Lock memory.

Types
uz2: - U3 v U4

Declaration

ULONG SglWriteData(
ULONG Productld ,
ULONG Address,
ULONG Count ,
ULONG = Data);

Parameters

Productld Indicates the Productld of the SG-L ock

Address Startaddress of data value block
0to 63- SG-Lock U3
0to 255 - SG-Lock U4

Count Number of datavalues

Data Pointer to data array, where data values be copied
from. (The devel oper isresponsibleto providean
array with a sufficient size).

Return values

SGL_SUCCESS

Data values succesfully written to
SG-Lock memory

SGL_DGL_NOT_FOUND

SG-L ock not found

Thefull list of return codesislisted in chapter 4.6.

24 Chapter 4: SG-Lock AP

4.3.3 Function: SglReadCounter
Description

Reads a 32-bit count value from the SG-Lock memory.

Types
uz2: - U3 v U4 v

Declaration

ULONG SglReadCounter (
ULONG Productld ,
ULONG CntNum ,
ULONG = Data);

Parameters
Productld Indicates the Productld of the SG-Lock
CntNum Number of counter
0to 15- SG-Lock U3
0to 63 - SG-Lock U4
Data Pointer to variable, that the counter value is as-
signed to
Return values
SGL_SUCCESS Count value successfully read
SGL_DGL_NOT_FOUND SG-L ock not found

Thefull list of return codesis listed in chapter 4.6.

Comments

Counters are simple 32 bit data values in the SG-Lock memory. If desired, they
can also be used for everything a 32 bit read/write variable is suitable for. By
doing so you can extend the general purpose memory over the indicated size.

Chapter 4: SG-Lock AP 25

4.3.4 Function: SglWriteCounter
Description

Writes a 32-bit count value to the SG-Lock memory.

Types
uz2:. - U3 v U4 V

Declaration

ULONG SglWriteCounter (
ULONG Productld ,
ULONG CntNum,
ULONG Data);

Parameters
Productld Indicates the Productld of the SG-L ock
CntNum Number of counter
0to 63- SG-Lock U3
0to 255 - SG-Lock U4
Data Counter value to be written

Return values

SGL_SUCCESS Count value succesfully written
SGL_DGL_NOT_FOUND SG-Lock not found

Thefull list of return codesislisted in chapter 4.6.

Comments

See SglReadCounter.

26 Chapter 4: SG-Lock AP

4.4 Cryptographic and Signing functions

4.4.1 Function: SglCryptLock
Description

En- or decrypts one or more 64-bit data blocks with 128-bit key. The crypto-
graphic algorithmis TEA.

Types
uz2. v U3 v U4 v

Declaration

ULONG SglCryptLock (
ULONG Productld ,
ULONG KeyNum,
ULONG CryptMode,
ULONG BlockCnt ,
ULONG *Data);

Parameters

Productld Indicates the Productld of the SG-Lock

KeyNum Number of key to use
Oto1-SG-Lock U3
0to 15 - SG-Lock U4

CryptMode Working mode
0 - Encrypt
1 - Decrypt

BlockCnt Number of data blocksto en- or decrypt

Data Pointer to data array, where values shal be
copied to. (The developer is responsible to pro-
vide an array with a sufficient size).

Chapter 4: SG-Lock AP 27

Return values

SGL_SUCCESS En-/Decryption successfully fin-
ished
SGL_DGL_NOT_FOUND SG-Lock not found

Thefull list of return codesislisted in chapter 4.6.

Comments

The function uses destructive data proccessing mode. That meens the input of
the parameter Datawill be overwritten during execution of the function.

28 Chapter 4: SG-Lock AP

4.4.2 Function: SglSignData
Description

Signs or verifies the signature of a data array. The task will will be processed by
the SG-Lock and if desired also by the application (PC-CPU) to accelerate the
signing process (combined mode). | mportant condition for combined mode:
Both keys (application and SG-Lock internal) have to be different, to ensure
highest security! The signatureis 64-bit long.

Types
u2:. v U3 v U4 v

Declaration

ULONG SglSignData(
ULONG Productld ,
ULONG =*AppSignKey ,
ULONG LockSignKeyNum,
ULONG Mode,
ULONG LockSignlnterval ,
ULONG DatalLen,
ULONG =* Data,
ULONG =* Signature);

Chapter 4: SG-Lock AP 29
Parameters
Productld Indicates the Productld of the SG-L ock
AppSignKey The 128-hit key used by the application for sign-
ing and verification. Pointer to an array of 4 in-
teger values of 32-bit. Only needed in combined
mode otherwise set 0.
LockSignKeyNum Number of 128-bit key in SG-Lock for signing
and verification.
Mode working mode

0 - create signature
1 - verify signature

LockSigninterval

Indicates the partitioning of computing power
between SG-Lock and application (PC-CPU). 0
is SG-Lock only. If >0 the value is used as the
power of 2, where the result of that determines
which block index is signed or verified by the
SG-Lock. E.g. value= 8, 28=256, that means the
first and after that every 256th block is processed
by the SG-Lock and all others by the application
(PC-CPU). That means 1/256= 0.4% of the task
is done by the SG-Lock and 99.6% by the PC-
CPU. Theresult isavery high acceleration of the
process.

Datalen Count of 32-bit valuesto process in data array.

Data Pointer to the array of 32-bit values to sign or
verify.

Signature Pointer to an array of 2 integers of 32-bit where

the created signature is given back (signing
mode) or wherethe signatureis given to the func-
tion for verification (verify mode).

30 Chapter 4: SG-Lock AP

Return values

SGL_SUCCESS Signature successfully created or
signature valid (depending on
used mode).

SGL_SIGNATURE_INVALID Signatureinvalid

Thefull list of return codesislisted in chapter 4.6.

Comments

The same value for the parameter LockSigninterval has to be used for signing
and verifying a certain data block, when using different 128-bit keys in the SG-
Lock and application (highly recommended for highest security). The reasons
is, that the 128-bit key in the application is less safe than the 128-bit key in
the SG-Lock. When a hacker succeeds to investigate the 128-bit key in the ap-
plication (which isin principle possible), then he will try that also first for the
SG-Lock. That will fail, if a differnt 128-bit key is used in the SG-Lock. For
a deeper understanding of the function, please take a look into the SG-Lock in-
clude/header file for your programming language. You will find the source code
of thefunctioninit.

Chapter 4: SG-Lock AP 31

45 Administrative Functions

4.5.1 Function: SglReadProductld
Description

Reads the 16-bit Productld from the SG-L ock.

Types
uz2. v U3 v U4 Vv

Declaration

ULONG SglReadProductld (
ULONG+ Productld);

Parameters

| Productld | Pointer to variable, that the Productid assigned to |

Return values

SGL_SUCCESS Productld successfully read
SGL_DGL_NOT_FOUND SG-Lock not found

Thefull list of return codesislisted in chapter 4.6.

Comments

The Productld is an identifier that eases to distinguish between different pro-
tected applications of SG-Lock users. For example company X protectsits appli-
cation A and B with SG-Lock and givesall keysfor application A the Productld
1 and the keys for application B the Productld 2, then all keys of application B
are ”"hidden” for application A and vice versa. This simple mechanism offersan
effective way to prevent confusion between keys of different applications (see
also chapter 3.3.). Setting of the Productld should be integrated into the initial-
ization process of the SG-L ocks before distributing with the protected software.

32 Chapter 4: SG-Lock AP

4.5.2 Function: SglWriteProductld
Description

Writes a new 16-bit Productld to the SG-Lock.

Types
uz2. v U3 v U4 v

Declaration

ULONG SglWriteProductld (
ULONG OldProductld ,
ULONG NewProductld);

Parameters
OldProductld Indicates the actual Productld of the SG-L ock
NewProductld Indicates the new Productld of the SG-Lock

Return values

SGL_SUCCESS Productld successfully written

SGL_DGL_NOT_FOUND SG-L ock not found

Thefull list of return codesis listed in chapter 4.6.

Comments

See SylReadProductld.

Chapter 4: SG-Lock AP

33

4.5.3 Function: SglWriteKey

Description

Writes a 128-hit key to the SG-L ock key memory.

Types
uz2: - U3 v U4
Declaration

ULONG SglWriteKey (
ULONG Productld ,

ULONG KeyNum,
ULONG *Key);
Parameters
Productld Indicates the Productld of the SG-Lock
KeyNum Number of the key to be written

0to1-SG-Lock U3
0to 15- SG-Lock U4

Key

128-bit Key to be written. Pointer to data array
of 4 integer values of 32-bit, that form the 128-bit

key

Return values

SGL_SUCCESS

Key successfully written to SG-
Lock

SGL_DGL_NOT_FOUND

SG-L ock not found

Thefull list of return codesislisted in chapter 4.6.

Comments

The 128-bit key of the U2 is read only and not changeable.

34

Chapter 4: SG-Lock AP

4.5.4 Function: SglReadConfig
Description

Reads configuration information about SG-L ock.

Types
uz2. v U3 v U4 v

Declaration

ULONG SglReadConfig (
ULONG Productld ,
ULONG Category ,
ULONG = Data);

Parameters
Productld Indicates the Productld of the SG-Lock
Category Type of requested information
0: Information about SG-L ock modul
Data Pointer to Data array of 8 integers of 32-bit The

Index 0: Type
Index 1: Interface

meaning of the single values are:

Index 2: Software Version

Index 3: Hardware Version

Index 4: Serial number

Index 5: Memory size in Dwords
Index 6: Number of counters
Index 7: Number of 128-Bit Keys

Return values

SGL_SUCCESS Information successfully read

SGL_DGL_NOT_FOUND SG-L ock not found

Thefull list of return codesis listed in chapter 4.6.

Chapter 4: SG-Lock AP 35

Comments

Further information to certain values can be found in the include and include/-
header files of the SG-Lock API.

36

Chapter 4: SG-Lock AP

4.6 Return Values

Every SG-Lock API function gives a return value back to the caller, to check if
the function was executed without errors. In the case that an error occured the
return value is unequal to 0. A detailed explanation of the error can be obtained

from the table below.
Name Value | Description
SGL_SUCCESS 0 Execution without errors
SGL_DGL_NOT_ FOUND 1 SG-Lock not found
SGL_AUTHENTICATION- 5 Authentication with SglAuthent()
_REQUIRED not or not errorfree processed
SGL_AUTHENTICATION- 6 Authentification with SglAuthent
_FAILED failed
SGL_FUNCTION NOT- 7 The called function is not sup-
__SUPPORTED ported by the found SG-L ock.
SGL_PARAMETERS- 8 Parameter of the called functionis
_INVALID out of the vaild value range.
SGL_SIGNATURE INVALID 9 Signatureinvalid
SGL_USB_BUSY 10 | Another application is claming

the SG-Lock for more than 5 sec-
onds.

Table 4.1: Return values and description of the SG-Lock-API.

5 Encryption, Signing and Key
Management

SG-Lock comes with a modul internal symmetric (that is to say encryption and
decryption key beeing the same) block cipher. The block size is 64 Bit or rather
2 double words. The key length is 128 Bit or rather 4 double words.

The cryptographic functions can be used for de- and encryption, and also for
data signing of, e.g. configurations and confidential data. The de- and encryp-
tion can be realized directly in SG-Lock, which provides a high level of security
due to secret keysthat can not be read from the memory. Although by this func-
tionality achieved security, this procedure has the constraint of alow datarate of
100 blocks per second, meaning 0.8 kb/sec, conditioned by the limited process-
ing power of SG-Lock. Practically this function islimited to small data volume
as far as only internal encryption by SG-Lock will be used. An encryption by
PC-CPU is unsecure due to the appearence and possibility of reading the key in
the memory with help of special tools. The advantage of this method is a fast
encryption rate of more than 10M B/sec.

Also exists a possibility of combine the internal encryption by SG-Lock and
encryption by PC-CPU to gain both advantages - high security provided by SG-
Lock and fast encryption by PC-CPU - in a single procedure. The encryption
rate is nearly as high as theinternal encryption by PC-CPU only.

This encryption method encrypts all 64-Bit data blocks and links them. The
first and in a periodic interval more blocks will be internally encrypted by SG-
Lock, al the rest by PC-CPU. Very important for this method is the usage of
unegual 128-Bit keys by the internal encryption by SG-Lock and by PC-CPU. In
this case the key used by PC-CPU can be lurked, but data is due to internal en-
cryption by SG-Lock and linking of data blocks already encrypted by a different
and secret 128-Bit key.

Factory-provided all key storage (1, 2 or 16 keys, depending on module type)
will beinitialized with keys. Each SG-Lock user gets his own set of secret keys,
that can be overwritten by self-generated keys (keys of module type U2 are static

37

38 Chapter 5: Encryption, Signing and Key Management

and can not be overwritten). All SG-Lock modules of auser include an identical
set of keys. This set of keyswill be delivered with the first purchase.
All demo modules have an own individual set of keys, printed below.

No Type 128-Bit key hexadecimal)
0 2,34 D94B6C2B 17E88CEF DADBCF1D 202161A2
1 34 2181588C 3798A2BB 36CAB86B 051040C1
2 4 BBDBF022 DO0D85396 O9BG6EFBSF 41354633
3 4 97CCAFDC 1EB606E7 5CB83119 9F7F457C
4 4 F8BA5A4D 1C1BCBDO 61140A39 49507A3F
5 4 326FD7E8 E6C39F3A CBA04A4B 37804850
6 4 554E5BA7 81665744 8F747F62 EOEE72F9
7 4 BAD58985 238BF49B (C97B1173 D3A28313
8 4 98940499 D20EDC71 68388EB6 B5DF3D1C
9 4 OFC6EC5F EBD20065 093984EF F52F415F
10 4 8DCO71AA 668477BE 095COCBE 3545E855
11 4 CBC15944 155BF5E3 88D9C8D3 E7142A18
12 4 FOD76719 43A48195 7AA26332 D3B2ES83C
13 4 8A467F11 789CD8E2 030FE272 A4750E6B
14 4 18FD8C08 B29157D7 F160F6A2 9E2FA426
15 4 90EC452F 04C30099 4B5102A9 4D942D78
Table 5.1: Factory-provided 128-Bit keys of demo modules

6 Programming Examples

6.1 Function SglAuthent

6.1.1 C/C++

#include "SGLW32.h"
unsigned int ReturnCode;

// This is the DEMO authentication code,
/I every regular SG-Lock user gets its
// own unique authentication code.
unsigned int MyAuthentCode[12] = {

OxF574D17B, OxA94628EE,

0xF2857A8F , 0x69346B4A ,

0x4136E8F2 , 0x89ADC688,

0x80C2C1D4, O0xA8C6327C,

0x1A72699A , 0x574B7CAO0,

Ox1E8D3E98, OxD7DEFDCS5 };

// do authentication of SGLW32.DII
ReturnCode = SglAuthent(MyAuthentCode);
if(ReturnCode != SGL_SUCCESS) {
// authentication failed!!
printf ("SglAuthent:_Error!_(code: 0x%X)\n",
ReturnCode);
}

// authentication succeeded... do the next regular

6.1.2 Delphi

interface

uses

{$INCLUDE ' SGLW32IF.PAS'}
implementation

{$INCLUDE ' SGLW32IP.PAS'}

thing ...

39

40 Chapter 6: Programming Examples

{ This is the DEMO authentication code, every regular SG-Lock
user gets its own unique authentication code.}
MyAuthentCode: Array[0..11] of LongWord= (
$F574D17B, $A94628EE, $F2857A8F, $69346B4A ,
$4136E8F2 , $89ADC688, $80C2C1D4, $A8C6327C,
$1A72699A , $574B7CAO0, $1ESD3E98, $D7DEFDC5);

procedure TForml.ButtonlClick (Sender: TObject);
var ReturnCode: LongWord;

{ do authentication of SGLW32.DII }
ReturnCode:= SglAuthent(MyAuthentCode);
if (ReturnCode <> SGL_SUCCESS) then

begin
{ authentication failed !! }
Memol. Text:= ' SglAuthent: Error!_ ' + char($0D) + char ($0A);
end;
{ authentication succeeded .. do the next regular thing ... }
end;

6.1.3 Visual Basic

" The file SGLW32.BAS has to be included in the project
' to ensure that all SG-Lock functions and constants
' are declared !!!

' This is the DEMO authentication code, every regular
' SG-Lock user gets its own unique authentication code.
Dim MyAuthentCode (0O To 11) As Long

MyAuthentCode (0) = &HF574D17B
MyAuthentCode (1) = &HA94628EE
MyAuthentCode (2) = &HF2857A8F
MyAuthentCode (3) = &H69346B4A
MyAuthentCode (4) = &H4136E8F2
MyAuthentCode (5) = &H89ADC688
MyAuthentCode (6) = &H80C2C1D4
MyAuthentCode (7) = &HA8C6327C
MyAuthentCode (8) = &H1A72699A
MyAuthentCode (9) = &H574B7CA0Q

MyAuthentCode (10) = &H1E8D3E98
MyAuthentCode (11) = &HD7DEFDC5

Private Sub ButtonSearchSGLock_Click ()

Chapter 6: Programming Examples 41

Dim Rc As Long " ReturnCode

do authentication of SGLW32.DII
Rc = SglAuthent(AuthentCode())

If Rc = SGL_SUCCESS Then

Textl.Caption = " SglAuthent_succeeded !"
Else
Textl.Caption = "SglAuthent_failed_!"
Exit Sub
End |f

" SG-Lock found .. do the next regular thing

End Sub

42 Chapter 6: Programming Examples

6.2 Function SglSearchLock
6.2.1 C/C++

#include "SGLW32.h"

/I In the case a SG-Lock user protects more than 1

/! application/product, he should give each of it a unique

/I product ID. Then its very easy to distinguish the SG-Locks
/I for each product

#define MY_PRODUCT ABC ID 1

#define MY_PRODUCT XYZ_ID 2

unsigned int ReturnCode;

/I Search SG-Lock with product ABC
ReturnCode = SglSearchLock (MY_PRODUCT ABC ID);
if(ReturnCode != SGL_SUCCESS) {
/I no SG-Lock found!!
printf ("SglSearchLock:_Error!_(code: 0x¥X)\n",
ReturnCode);
}

/I SG-Lock found! ...do the next regular thing...

6.2.2 Delphi

interface

uses

{$INCLUDE ’'SGLW32IF.PAS'}
implementation

{$INCLUDE ’'SGLW32IP.PAS'}

{In the case a SG-Lock user protects more than 1 application/
product , he should give each of it a unique product ID. Then
its very easy to distinguish the SG-Locks for each product}
const MY_PRODUCT ABC ID = 1;

MY_PRODUCT XYZ ID = 2;

procedure TForml.ButtonlClick (Sender: TObject);
var ReturnCode: LongWord;

{ Search SG-Lock for product ABC }
ReturnCode:= SglSearchLock (MY_PRODUCT ABC ID);
if (ReturnCode <> SGL_SUCCESS) then
begin
{ no SG-Lock found!! }

Chapter 6: Programming Examples

43

Memol. Text:=" SglSearchLock :_ Error!_'+char ($0D)+char ($0A);
end;

{ SG-Lock found .. do the next regular thing ... }
end;

6.2.3 Visual Basic

The file SGLW32.BAS has to be included in the project
" to ensure that all SG-Lock functions and constants
' are declared !!!

In the case a SG-Lock user protects more than 1
" application/product, he should give each of it a
" unique product ID. Then its very easy to distinguish
' the SG-Locks for each product.
Public Const MY_PRODUCT ABC ID As Long
Public Const MY_PRODUCT XYZ ID As Long

1
2

Private Sub ButtonSearchSGLock_Click ()
Dim Rc As Long " ReturnCode

' Search SG-Lock for product ABC
Rc = SglSearchLock (MY_PRODUCT_ABC ID)

Select Case Rc
Case SGL_SUCCESS
Textl.Caption = "SG-Lock_found_!"
Case SGL_DGL_NOT_FOUND
Textl. Caption = "SG-Lock_not_found_!"
Exit Sub
Case Else
Textl.Caption = "Error_" & Rc & " _occured_!"
Exit Sub
End Select

' SG-Lock found .. do the next regular thing

End Sub

44 Chapter 6: Programming Examples

6.3 Function SglReadSerialNumber
6.3.1 C/C++

#include "SGLW32.h"
#define PROD_ABC ID 1

unsigned int ReturnCode;
unsigned int SerialNumber

/! Read serial number of SG-Lock with product ABC
ReturnCode = SglReadSerialNumber (PROD_ABC ID, &SerialNumber);
if(ReturnCode != SGL_SUCCESS) {
[/ no SG-Lock found!!
printf (" SglReadSerialNumber :_ Error!_ (code: %d)\n",
ReturnCode);

}
/|l SG-Lock serial number read ! ...do the next regular thing...

6.3.2 Delphi

interface

uses

{$INCLUDE ’SGLW32IF.PAS'}
implementation

{$INCLUDE ’'SGLW32IP.PAS'}

procedure TForml.ButtonlClick (Sender: TObject);
const PROD_ABC ID = 1;
var ReturnCode : LongWord;

SerialNumber : LongWord;

{ Read serial number of SG-Lock with product ABC }
ReturnCode:= SglReadSerialNumber (PROD_ABC_ID,

Addr (SerialNumber);
if (ReturnCode <> SGL_SUCCESS) then

begin
{ no SG-Lock found!! }
Memol. Text:= ' SglReadSerialNumber :_Error!_ ' +
char ($0D) + char ($0A);
end;
{ SG-Lock serial number read! ..do the next regular thing.. }

end;

Chapter 6: Programming Examples

45

6.3.3 Visual Basic

The file SGLW32.BAS has to be included in the project
to ensure that all SG-Lock functions and constants
are declared !!!

In the case a SG-Lock user protects more than 1
application/product, he should give each of it a
unique product ID. Then its very easy to distinguish
the SG-Locks for each product.

Public Const PROD_ABC ID As Long = 1

Private Sub ButtonSearchSGLock_Click ()

Dim Rc As Long " ReturnCode
Dim SerialNumber As Long
" Read serial number of SG-Lock for product ABC
Rc = SglReadSerialNumber (PROD_ABC ID, SerialNumber)

Select Case Rc

Case SGL_SUCCESS
Textl.Caption = SerialNumber

Case SGL_DGL_NOT_FOUND
Textl.Caption = "SG-Lock_not_found_!"
Exit Sub

Case Else
Textl.Caption = "Error_" & Rc & " _occured_!"
Exit Sub

End Select

' SG-Lock serial number read ..do the next regular thing...

End Sub

46 Chapter 6: Programming Examples

6.4 Function SglReadData

6.4.1 C/C++

#include "SGLW32.h"

#define PROD_ABC_ID 1

/| address where date is stored in SG-Lock:
#define RUN_DATE ADR 10

/I date stored as year /month/day (3 DWords):
#define RUN_DATE CNT 3

unsigned int RC;

unsigned int RunDate[3];

/I date storage for compare

/l Read date to run of SG-Lock with product ABC
RC = SglReadData (PROD_ABC._ID,
RUN_DATE_ADR,
RUN_DATE_CNT,
RunDate);
if (RC != SGL_SUCCESS) {
[/ no SG-Lock found!!
printf ("SglReadData: _ Error!_(code: %d)\n", ReturnCode);

/I read date from system, compare with RunDate
// and decide what to do

6.4.2 Delphi

interface

uses

{$INCLUDE ’SGLW32IF.PAS'}
implementation

{$INCLUDE ’'SGLW32IP.PAS'}

procedure TForml.ButtonlClick (Sender: TObject);
const PROD_ABC ID = 1;
RUN_DATE ADR= 10; { address where date is stored
in SG-Lock }
RUN_DATE CNT= 3; { date stored as year/month/day
(3 DWords) }
var RC : LongWord;
RunDate: Array [0..2] of LongWord; { date storage for
compare }

{ Read date to run of SG-Lock with product ABC }

Chapter 6: Programming Examples 47

RC:= SglReadData(PROD_ABC ID,
RUN_DATE ADR,
RUN_DATE CNT,
Addr (RunDate);
if(RC <> SGL_SUCCESS) then

begin
{ no SG-Lock found!! }
Memol. Text:= ' SglReadData: _Error! ' +
char ($0D) + char ($0A);
end;

{read date from system, compare with RunDate
and decide what to do}

end;

6.4.3 Visual Basic

" The file SGLW32.BAS has to be included in the project
" to ensure that all SG-Lock functions and constants
' are declared !!!

In the case a SG-Lock user protects more than 1
application/product, he should give each of it a

" unique product ID. Then its very easy to distinguish
' the SG-Locks for each product.

Public Const PROD_ABC ID As Long = 1

' addresse where date is stored in SG-—Lock

Public Const RUN_DATE ADR As Long = 10

' date stored as year /month/day (3 DWords)

Public Const RUN_DATE CNT As Long = 3

Private Sub ButtonSearchSGLock_Click ()

Dim Rc As Long " ReturnCode
Dim RunDate (0 to 2) As Long ' date storage for compare

" Read date to run of SG-Lock with product ABC
Rc = SglReadData(PROD_ABC_ID, RUN_DATE ADR,
RUN_DATE CNT, RunDate())

Select Case Rc
Case SGL_SUCCESS
Textl.Caption = RunDate(0)&"/"&RunDate(1)& " /"&RunDate (2)
Case SGL_DGL_NOT_FOUND
Textl.Caption = "SG-Lock_not_found_!"
Exit Sub

48 Chapter 6: Programming Examples
Case Else
Textl.Caption = "Error_" & Rc & "_occured_!"
Exit Sub
End Select

‘read date from system,
"and decide what to do

End Sub

compare with RunDate

Chapter 6: Programming Examples 49

6.5 Function SglWriteData
6.5.1 C/C++

#include "SGLW32.h"

#define PROD_ABC_ID 1

// addresse where date is stored in SG-Lock:
#define RUN_DATE ADR 10

/l date stored as year/month/day (3 DWords):
#define RUN_DATE CNT 3

unsigned int RC;

unsigned int RunDate[3]; /] date storage
RunDate[0] = 2005; /!l new run date
RunDate[1] = 12;

RunDate[2] = 24;

/Il Write new date to run to SG-Lock with product ABC
RC = SglWriteData(PROD_ABC ID,
RUN_DATE ADR,
RUN_DATE CNT,
RunDate) ;
if(RC I= SGL_SUCCESS) {
/I no SG-Lock found!!
printf ("SglWriteData:_Error!_(code: %d)\n", RC);
}

/I new date successfully written, lets do the next thing...

6.5.2 Delphi

interface

uses

{$INCLUDE ’'SGLW32IF.PAS'}
implementation

{$INCLUDE ' SGLW32IP.PAS'}

procedure TForml.ButtonlClick (Sender: TObject);
const PROD_ABC ID = 1;
RUN_DATE ADR= 10; { addresse where date is stored
in SG-Lock }
RUN_DATE CNT= 3; { date stored as year/month/day

(3 DWords) }
var RC : LongWord;

RunDate: Array [0..2] of LongWord; { date storage }

RunDate[0]:= 2005; // new run date

50 Chapter 6: Programming Examples

12;
24;

RunDate[1]:
RunDate[2]:

{ Write new date to run to SG-Lock with product ABC }

RC:= SglWriteData(PROD_ABC ID, RUN DATE ADR,
RUN_DATE CNT, Addr(RunDate);

if (RC <> SGL_SUCCESS) then

begin
{ no SG-Lock found!! }
Memol. Text:= ' SglWriteData: _ Error!_ ' +
char ($0D) + char ($0A);
end;
{ new date successfully written, lets do the next thing... }
end;

6.5.3 Visual Basic

" The file SGLW32.BAS has to be included in the project
' to ensure that all SG-Lock functions and constants
' are declared !!!

" In the case a SG-Lock user protects more than 1

" application/product, he should give each of it a

' unique product ID. Then its very easy to distinguish
" the SG-Locks for each product.

Public Const PROD_ABC ID As Long = 1

' addresse where date is stored in SG-Lock

Public Const RUN_DATE ADR As Long = 10

' date stored as year/month/day (3 DWords)

Public Const RUN_DATE CNT As Long = 3

Private Sub ButtonSearchSGLock_Click ()

Dim Rc As Long * ReturnCode
Dim RunDate (0 to 2) As Long ' date storage
RunDate (0) = 2005 ’ new run date

RunDate (1) = 12

RunDate (2) = 24

" Write new date to run to SG-Lock with product ABC
Rc = SglWriteData(PROD_ABC ID, RUN DATE ADR,
RUN_DATE_CNT, RunDate())

Select Case Rc

Chapter 6: Programming Examples 51

Case SGL_SUCCESS
Textl.Caption = RunDate(0)&"/"&RunDate(1)& " /"&RunDate (2)
Case SGL_DGL_NOT_FOUND
Textl.Caption = "SG-Lock_not_found_!"
Exit Sub
Case Else
Textl.Caption = "Error_" & Rc & " _occured_!"
Exit Sub
End Select

" new date successfully written, lets do the next thing ...

End Sub

52 Chapter 6: Programming Examples

6.6 Challenge-Response-Authentification of a
SG-Lock

6.6.1 C/C++

#include <time.h>

#include <stdlib.h>

#include "SGLW32.h"

#define PROD_ABC_ID 1
#define TEA KEY_NUM 1
#define CRYPT_MODE ENCRYPT 0

unsigned int RC;

unsigned long int RandomNumber[2]; // test random number

unsigned long int RanSglResult[2]; // encryption result
/1 of SG-Lock

unsigned long int RanAppResult[2]; // encryption result
/1 of appliction

/Il 1. step: generate a 128—bit key
/1 (NOT for U2/L2 — fixed key!)
unsigned long int TEA_Key[4]={ O0x238A3F10,
Ox61EABG7A ,
0x092E1CD2,
0x832FAEC3 };

/] ATTENTION ! ATTENTION ! ATTENTION ! ATTENTION !
/1 Do this only once when initialising the key prior to
/1 delivery of the dongle and NOT in the protected application!
/I Writing the key into the SG—Lock modul
RC = SglWriteKey (PROD_ABC_ID, TEA_KEY_NUM, TEA_Key);
if (RC != SGL_SUCCESS) {
printf ("SglWriteKey :_ Error!_(code: %d)\n", ReturnCode);

}
/1 ATTENTION END

/Il 2. step: generate two 32—bit (= one 64—bit) random numbers
srand (clock ()); // force every time different
/] start of sequence
RandomNumber[0] = rand () << 16 | rand ();
RandomNumber[1] = rand() << 16 | rand();

/I 3. step: encrypt the random number in the SG-Lock modul
RanSglResult[0]= RandomNumber[O0];
RanSglResult[1]= RandomNumber[1];

Chapter 6: Programming Examples 53

RC = SglCryptLock(PROD_ABC_ID,
TEA_KEY_NUM, /1 number of key
CRYPT_MODE ENCRYPT, // encrypt

1, // block count
RanSglResult);

/I 4. step: encrypt the random number in the protected
/I application

SglTeaEncipher (RandomNumber, RanAppResult, TEA_key);
/I 5. Step: compare both results
if ((RanSglResult[0] != RanAppResult[0]) ||

(RanSglResult[1] !'= RanAppResult[1])) {

/I authentication failed !!
printf ("SG-Lock_Modul_authentication:_ Error!\n");

}

/l authentication successful

More programming examples and the necessary include files can be found on
the SG-Lock CD-ROM.

7 Technical Data

7.1 SG-Lock U2/U3/U4

Typ u2 | U3 | U4
Interface USB

Memory Type non volatile RAM

Memory no Memory 256 Bytes 1024 Bytes
32-Bit-Counter no Counter 16 64
128-Bit-Key 1 (fixed) 2 (freewritable) | 16 (free writable)
Algorithm TEA

Read Cycles unlimited

Write Cycles > 1.000.000

Data Storage 128-Bit encrypted

Data Retention > 20 Years

Power Consump. < 50mA

Working Temp. 0to 70°C

Storage Temp. -30to 70°C

Size 47 x 16 x 8mm (L xBxH)

Weight 50

Standard Color blue

55

56

Chapter 7: Technical Data

Notes

Chapter 7: Technical Data

57

	Introduction
	Installation and Tools
	32/64-bit Operating Systems
	Windows XP to 10
	Linux and Mac OS X
	Windows CE 4, 5 and 6
	Deinstallation
	Edit SG-Lock with the SG-Lock Manager

	Protecting Software with SG-Lock
	Introduction
	Protection Strategies
	The SG-Lock Product ID - what is it good for?
	Encryption and Challenge-Response-Authentication of SG-Lock

	SG-Lock API
	Function summary
	Basic functions
	Function: SglAuthent
	Function: SglSearchLock
	Function: SglReadSerialNumber

	Extended Function
	Function: SglReadData
	Function: SglWriteData
	Function: SglReadCounter
	Function: SglWriteCounter

	Cryptographic and Signing functions
	Function: SglCryptLock
	Function: SglSignData

	Administrative Functions
	Function: SglReadProductId
	Function: SglWriteProductId
	Function: SglWriteKey
	Function: SglReadConfig

	Return Values

	Encryption, Signing and Key Management
	Programming Examples
	Function SglAuthent
	C/C++
	Delphi
	Visual Basic

	Function SglSearchLock
	C/C++
	Delphi
	Visual Basic

	Function SglReadSerialNumber
	C/C++
	Delphi
	Visual Basic

	Function SglReadData
	C/C++
	Delphi
	Visual Basic

	Function SglWriteData
	C/C++
	Delphi
	Visual Basic

	Challenge-Response-Authentification of a SG-Lock
	C/C++

	Technical Data
	SG-Lock U2/U3/U4

